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Abstract From the extension ofthe covariant vertex operator wnshuction for lk affine K~L- 
Moody algebras to Larenaian algebras, we show that ihe pamfemionics realization ofarbibKy 
level affine algebras can be interpret& in terms of bosonic realizaton. This wnnection is 
explicitly illusmted for level k = 2 SU(2)  algebra 

1. Introduction 

The vertex operators representation of Kac-Moody (KM) Lie algebras (for a review on the 
subject and references see [I]) is a mighty theoretical tool in conformal field theories with 
applications in statistical systems and string models. As is well known the explicit form of 
the vertex is strongly dependent on the level k of the representation. 

In [2] Goddard and Olive have suggested a vertex-covariant construction by means 
of which it is possible to obtain simply-laced finite-dimensional Lie algebras, affine Kac- 
Moody algebras or Lorentzian algebras by considering respectively the Euclidean, singular 
or Lorentzian lattice [3]. Their construction in the case of affine algebras is very interesting 
because it is independent of the level k, in the sense that it makes use of the same fields 
for any k value. 

Anotherpossibility is to use the Frenkel-KacSegal construction [4] which is interpreted 
as a transvene or light-gauge construction and gives only the k = 1 representation. A 
generalization of this construction for k > 1 is obtained by the use  of parafermionic 
fields [5-71, but this realization is dependent on k.  

The aim of this work is to clarify a few aspects of theconnection between the covariant 
and parafermionic construction. In section 2 we recall the covariant construction of affine 
KM algebras and extend it to Lorentzian algebras by adding an extra light-like direction. In 
section 3 we discuss the relation between the construction for k # 1 of the affine algebras 
which we have recalled in section 2 and the parafermionic construction. We show explicitly 
the equivalence between parafermionic fields and our fields in the case of SU(2)  fork = 2. 

~ ~ 

2. Covariant Construction of KM algebras 

The Goddard-Olive construction of affine KM algebras can be interpreted as a vertex 
construction of a~Lie algebra in a singular lattice obtained hy adding a light-lie direction 
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to the Euclidean lattice defining the horizontal finite Lie algebra. The outer derivation 
is consistent with the extension of the singular lattice to a Lorentzian one and with the 
interpretation of the &ne algebra as a sub-algebra of a hrentzian one. 

Let us recall shortly the essential steps of the covariant construction. 
We introduce an infinite set of annihilation and creation operators U[ n E 2, satisfying 

the commutation relations 

[a[. a:] = ngPY&tm.o (1) 

with g"" a Minkowskian diagonal metric and 

(2) P i -  P a, -a-" .  

The momentum operator is U: = p" and we introduce the q" operator such that 

14'1, p"] = ig'". (3) 

Then we introduce the fields 

and 

If we consider the mots r belonging to a Lorentzian lattice, we can decompose them as 

r = a + nK+ + m K -  (6) 

with K*2 = 0, Kt . K -  = 1 and CY belonging to A, the horizontal Euclidean lattice of a 
simply-laced algebra 

Then the vertex operatc. .issociated to a root r is 

(7) , - J F ( ~ )  =: eir??lr) . 
where the dots indicate the normal ordering, with the usual property 

The aftine sub-algebra is spanned, for the real roots, by 

c, being a cocycle, and for the imaginary roots by 

& : e " " ( Z ) U " ~ + ( Z )  : 

were the i, j indices are restricted to the Euclidean lattice. 
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A quite general cons&%ion of co-cycles has been done by Goddard4live [2]~imd we 

The commutation relations are 
can use their co-cycles in our construction, so we have not to wony about this aspect. 

[HiI(+, .:,+I = ns'j8"+m,oK+ ' p . (11) 

for the Heisenberg sub-algebra and 

p , A B + m K * ]  = O  ~ (r .,9 > 0 (12) 

[ A " h K '  A@+mKr] = E((Y .  p)AU+B+(ntm)K+ (Y.,9=-1 (13) 

We can also define a derivation (not belonging to the affine KM algebra) by 

D = -K- . p (16) 

with the commutators 

One notes that K +  . a, commutes with any element of the algebra; therefore we can 
take them to be constant and in particular 

K + . p + k  K + . a , + O  if n f O .  (1% 

The level independence is now evident from the above construction and from (14) and (19). 
Let us emphasize that this property is a natural consequence of the extension of the 

Euclidean lattice to a Lorentzian one. 

3. Relationship with parafermions 

The choice of (19) corresponds to making a transformation from the covariant gauge to the 
transverse gauge and we will examine this correspondence. 

In this transformation the vertex operator UnK'(z) is reduced to 

(2Q) u"K+(z)  = einX+.qZnK+.p 

where the phase einKt.q is irrelevant in this context, 
The other operators become 
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If k = 1 this is the Frenkel-KacSegal construction but if k > 1 it looks like a different new 
construction. Now we can discuss the connection of this construction with the parafermionic 
one. 

For k z 1 the Fock space F' of Heisenberg sub-algebra is build up by the set of Hi 
operators, which is the subset of the creation and annihilation operators of whole Fock space 
F ,  a i ,  with p = i and m = nk with k fixed. 

Then we decompose the F space in 

F = Fk @ Q' 

where a' is the vector space of vacuum vectors for the Heisenberg sub-algebra. 
The Hilbert space where the operators of (4) act is 

H = F @ A * .  

(A* is the the dual of A lattice.) 
Let LIS now &fine the fields on Fk @ A* space: 

(fork = 1, from (5)  H ' ( z )  = &""(z)) with 

and 

We can also define a vertex operator on Fk  @ A*: 

~ e ( ~ )  = Z I - l / k  : e irr.X(z) . 
which satisfies the relation 

Morever, the fields on are defined by 

and satisfy 

We shall show that these fields can be interpreted as the parafermionic fields for the k 

In fact, by means of the conformal transformation z -+ zk and using the isomorphism 
level. 
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we can write (27) as . 

and the vertex Ua(z)  of (28) becomes 

=: eiu$(i)/fi.  . .  

3485 

(33) 

(34) 

The above equations define the quantities appearing in the Gepner construction in terms 

In fact the currents hi@) and ,y&) given by equation (2) of [8] can be written as 
of these used in the Lorentzian lattice approach. 

x&) = c,+"O)U"(z) (36) 

By the definition (30) and by (31), using (32)-(36) we obtain the parafermionics OPE 
and they satisfy the commutation relations of equations (4) of [8]. 

relations 

. 

k- 1 

p e l  
(37) +:(z)+B(6) =: V ( Z ) * B ( t )  : JJ(z"k - € p p ) - - . q z  - 6 )  CI.j?(l-i, 

where E = e2ni/k . 
For (Y = -b these relations are 

+"(2)+-"(6) = kZ(2 - 6)-2+2/x (38) 

and for a. p = - 1  

+"(;)+.8(6) = k(z -6)-l-*.8/k + a+B ( 6 ) .  (39) 

Therefore by comparing (38) and (39) with equation (6) of [8] we can states that the 
fields, +m(z), given by (30) and (31), after a conformal transformation and the use of the 
isomorphism of (32). are proportional to the parafermions introduced in [8]. 

We can decompose l/la(z) in a sum of k parts with definite boundary conditions 

where 

In this case the new modes become 

where the boundary conditions for parafermionic fields are selected by the relation 

f f . p + A = O  modk 143) 
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which is imposed in order to have a single-valued integrand; therefore we must take a 
particular quotient in the nx space. 

In this way we obtain the discrete symmeay which is associated to the charge in A*/kA.  
Let us emphasize once more that the parafernions appear naturally in this procedure and 

they are built on the bosonic space by means of bosonic fields through (30). so we consider 
the present procedure to obtain parafermions as a generalized bosonization procedure. 

Finally we illustrate explicitly this connestion in the simplest case of SU(2) affine 
algebra with k = 2. In this case 

an -n 
Q ( Z )  - X ( Z )  = i  -2 

nEZZ+I 

is an odd field and 

**t(z) = 2-1’2 : exp(7 

satisfy 

The vertex operator 

&z%~*(z)@*(z) 

is an odd or even field if a . p E 22 + 1 or a . p E 2 2  respectively. 
@*(z) contains odd and even m&s and we can ulite them as the sum of two fermionic 

fields of defined parity (type Ramond (R) or NeveuSchwan (NS)) [9]: 

(48) 
In (47) we select the even modes, therefore A: takes conhibution from Ramond fermions 
type if p belongs to a spin representation or by Neveu-Schwan fermions if p belongs to a 
vectorial or scalar representation: 

**w = V5(**(z2h + **(Z*)NS) . 

By means of the isomorphism defined by (33) we obtain an equivalent construction that 

If we define the free massless Bose cbiral field 4(z )  (equation (32)) and the currents 
is directly related to standard realization [9]. 

(51) 

where a = Lt& and $ is a R or NS fermion, we obtain the usual theory with a stress tensor 
which generates a Virasoro algebra with central charge c = corresponding to level k = 2 
SU(2)  affine algebra [8,9]. 

Of course one of the most interesting application of the covariant vertex construction is 
the realization of Lorentzian algebras [lo]. 

The unified construction of arbitrary level representations of affine KM algebras oppears 
quite naturally in this context In fact, the level k can be changed by the action of the pure 
Lorentzian generators. This is in complete analogy with the case of affine algebras where 
the weights of horizontal finitedimensional Lie sub-algebra are changed by the action of 
the affine generators. 

= & : eia+(r)/& : e 
*R(NS) (‘1 
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